
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Phase diagram of the face-centred cubic Blume-Emery-Griffiths model in
the cluster variation method tetrahedron approximation
C. Buzanoa; L. R. Evangelistab

a Dipartimento di Fisica del Politecnico, Torino, Italy b Departmento de Fisica, PR, Brazil

To cite this Article Buzano, C. and Evangelista, L. R.(1993) 'Phase diagram of the face-centred cubic Blume-Emery-
Griffiths model in the cluster variation method tetrahedron approximation', Liquid Crystals, 14: 4, 1209 — 1215
To link to this Article: DOI: 10.1080/02678299308027829
URL: http://dx.doi.org/10.1080/02678299308027829

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678299308027829
http://www.informaworld.com/terms-and-conditions-of-access.pdf


LIQUID CRYSTALS, 1993, VOL. 14, No. 4, 1209-1215 

Phase diagram of the face-centred cubic Blume-Emery-Griffiths 
model in the cluster variation method tetrahedron approximation 

by C. BUZANO*I and L. R. EVANGELISTAIS 
Dipartimento di Fisica del Politecnico, Torino, Italy 

Departmento de Fisica, FUEM 87020 Maringa’, PR, Brazil 

The critical behaviour of the Blume-EmeryGriffiths model is analysed utilizing 
the cluster variation method in the tetrahedron approximation in order to include 
the effects of four-body correlations and to obtain an accurate determination of 
critical surfaces. The model has a very rich phase diagram and recently its interest 
has increased for it exhibits a reentrant phenomenon. In this paper the Blume- 
EmeryyGriffiths model is proposed to describe the reentrant isotropic-nematic 
transition in lyotropic liquid crystals. Our results are compared with experimental 
data with a good success. 

1. Introduction 
The spin-1 Blume-Emery-Griffiths model [l] has been proposed to describe the 

critical behaviour of several physical systems such as 3He-4He mixtures, multicompo- 
nent fluids, magnetic systems [2] and also liquid crystals [3]. The model has many 
interesting features and has attracted a lot of attention mainly due to the richness of its 
phase diagram, which presents first and second order transitions and multicritical 
points. It also exhibits reentrant behaviour for suitable values of the coupling 
parameters, and of the coordination number v of the lattice [4]. The existence of a new 
phase, the staggered quadrupolar phase, was also predicted to occur for some special 
values of the coupling parameters using a Monte Carlo simulation [S]. The model has 
been investigated extensively and with a variety of techniques. 

In this paper we utilize the Blume-Emery-Griffiths model to consider some critical 
properties of lyotropic liquid crystals. In lyotropics, the existence of a reentrant 
isotropic-nematic behaviour was discovered for a uniaxial material [6,7]. It is just the 
reentrant phenomenon in lyotropics we propose to describe by means of the three-state 
Potts model in external fields, which in turn can be related to the Blume-Emery- 
Griffiths model [8]. 

Our investigation is carried out with the cluster variation method [9, lo] in the 
tetrahedron approximation. An important characteristic of the cluster variation 
method is that the accuracy of the method generally increases by increasing the cluster 
size. Thus, this four-body approximation, besides being more realistic than the mean- 
field one, has been also chosen in order to achieve a more accurate description of the 
phase diagram. 

2. The model 
The Blume-Emery-Griffiths model is characterized by the hamiltonian 
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where Si is the z-component of the spin-1 operator at site i ( i  = 1,2,. . . N )  of a regular 
lattice and ( i j )  indicates summation over nearest-neighbours. J ( J > O )  and G are 
respectively dipole-dipole and quadrupole-quadrupole coupling strengths, D is a 
single-ion anisotropy term and B an external field. 

According to the cluster variation method, the entropy S of the system is evaluated, 
in approximate form, as a sum of suitably weighted cluster entropies [lo] (associated to 
a selected set of clusters and of their subclusters). We assume a face-centred cubic (fcc) 
lattice and choose the tetrahedron as the largest cluster to carry out the calculation. In 
this approximation the free energy per site f = ( < H )  - T S ) / N  is given by [ 111 

where (. . .) denotes thermal average, k is the Boltzmann constant, T the absolute 
temperature. ps, pp and pT are respectively one-spin, two-spin and four-spin reduced 
density matrices (Tr ps =Tr pp = Tr pT = 1) to be determined in the minimization 
process of the free energy. The reduced density matrix elements can be expressed in 
terms of the order parameters y,, y 2  and of the two-, three-, four-site correlations 
Y 3 9 . .  . , Y 1 4  

Y l = ( s l ) ,  Y 2 = ( s ? ) ,  Y3=(Sls2),  Y4=(slsi), y.5=(s:s~), 

Y6=(s1s2s3), Y7=(sls2sg),  YS=(slsis:), Y9=(S?S:S:), 

Y10=(s1s2s3s4), Y l l  =(s1s2s3s:), Y12=(sls2sis:) ,  

with the advantage of utilizing only independent variables [ 111. Also the internal 
energy part of the free energy can be written in terms of the order parameters and of the 
multi-site correlations 

In (4) we have introduced the dimensionless quantities b = B/12J, d = D/12J, 5 = G/J 
(12 is the coordination number for the fcc lattice). The minimization of the free energy, 
now expressed in terms of y l , .  . . , ~ 1 4 ,  requires the solution of the system of fourteen 
coupled non linear equations 

-0, i =  1,2,.. ., 14. a f  
a Y i  
-- 

However, after a careful analysis, this set may be manipulated in order to express the 
three- and four-site correlations as explicit functions of the order parameters y,, y, and 
of the two-site correlations y 3 ,  y4, y 5 .  That can be performed by rewriting equations (5)  
in terms of the elements of the reduced density matrices and by solving them for the 
four-site density matrix elements (an analogous procedure has been adopted in [ I  11 
where the cluster variation method tetrahedron approximation has been applied to 
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The second order critical surface can be deduced from equations (6) in limit case y, +O. 
It is given by the following equation. 

1 -12 + A3-A4 + A5 + Az(A4-A6) + r i5(A3-A1)-1314 + &&=o, (9) 
where, again for compactness, we have defined 

with the quantities 

w = W(y, =0, y4 =O), ui= y + ( y l  =0, y4 =O), i =  1 , .  . . ,6.  

The determination of the first order critical surface is numerically performed by 
comparing the free energy when more than one minimum arises. The above equations 
are the basic tool for a detailed analysis of the critical properties of the model. 

We can now consider the model in the context of lyotropic liquid crystals. 
Experiments carried out on a three-component lyotropic mixture of potassium laurate, 
1-decanol, and water have revealed the existence of a reentrant isotropic-nematic 
transition [7]. Theoretical efforts have been made to explain this phenomenon, in 
particular, de Oliveira and Figueiredo Net0 [ 131 have proposed the three-state Potts 
model [8] to account for the interaction between the micelles. They give a simplified 
description of the physical system, by restricting the allowed orientations of the micelles 
to the three Cartesian axes of the laboratory frame of reference. The three-state Potts 
model (which corresponds to the Blume-Emery-Griffiths model for 5 = 3, d = 2) does 
not exhibit reentrance [4]. In [13] the reentrant behaviour is then introduced by 
assuming a linear dependence of the micellar shape anisotropy with temperature. In 
this paper we still propose the three-state Potts model (as in [13]) but now adding two 
external field terms. The hamiltonian is 

where oi = 0,1,2 are the labels for the three orientations and dKr(oi, oj) = 1 if oi = aj, 0 
otherwise. In equation (1 1) the first term represents the three-state Potts model, the last 
term accounts for the interaction with an external field. The remaining term contains an 
additional field M which applies to neighbouring micelles when they are both oriented 
in the direction labelled by 0. The hamiltonian (see equation (1  1)) can be regarded as 
that of a spin-1 system whose spin variables are S i =  - 1,0,1. In terms of the new 
variables we write 

If the state S i = O  is identified as the Potts state oi=O, we obtain the Blume-Emery- 
Griffiths model described by the hamiltonian (l), apart from an additive constant. The 
parameters J, G and D of the Blume-Emery-Griffiths model are related to the 
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parameters K ,  M ,  L of the three-state Potts model with external fields by: J = K/2, 
G = M + 3K/2 and D = 12(K + M )  + L. A convenient choice of the values for the 
external fields Land M allow us to obtain a set of values for the parameters of the 
Blume-Emery-Griffiths model for which the reentrant behaviourg is found. 

In [4] the Blume-Emery-Griffiths model has been studied with the cluster 
variation method in the pair approximation, determining the regions of the parameter 
space where the reentrance occurs. In the present paper the phase diagram is analysed 
in a more accurate approximation. The regions of the parameter space where the model 
exhibits reentrant behaviour are slightly modified. We have chosen a set of values for 
the parameters of the Blume-Emery-Griffiths model which allows us to compare the 
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Figure 1. Critical temperatures versus d=D/12J for {= -0.52 in the tetrahedron (thick line) 
and in the pair approximation (thin line). Solid lines denote second order phase transitions 
and broken lines first order phase transitions. T is a tricritical point. 

c 
a 

10 20 30 T/'C 
Figure 2. Order parameter y1 versus temperature for {= -052 and d=0.2425. Theoretical 

curve (solid line) and experimental data from [7] (dots). 
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kTIl2J 

Figure 3. Order parameters y ,  (solid line) and y ,  (broken line) versus temperature for 5 = -0.52 
and d=0.238. 

results with the experimental data. In figure 1 the phase diagram is shown for 
5 = -0.52 both in the tetrahedron (thick line) and in the pair approximation (thin line). 
This diagram exhibits first order phase transitions (broken lines), second order phase 
transitions (solid lines) and a tricritical point T. Improving approximation, the second 
order transition line undergoes a remarkable variation, while the first order one is 
nearly unchanged. We can identify two kinds of reentrant behaviour according to the 
value of d. For values of d just larger than 0.24 we have a nematic-isotropic reentrant 
phase. The behaviour of the order parameter y, versus temperature (solid line) is given 
in figure 2 for d =0.2425. In the same figure the experimental data (dots) obtained by 
Galerne et al. [7] are reproduced. It is worth noting that the agreement is good. A 
problem occurs with respect to the order of the transition: while the low temperature 
transition (isotropic-nematic) can be of first order (see figure 1), the successive more 
high temperature transition (nematic-isotropic) is of second order. This fact apparently 
is in contrast with the experimental results. The phase diagram of figure 1 shows 
another remarkable feature. For values of d just lower than 024 the system exhibits the 
sequence nematic-isotropic-nematic-isotropic phase when the temperature increases 
from zero. Figure 3 gives the behaviour of the order parameters y, and yz in this case 
(d =0238). A first order nematic-isotropic phase transition is followed by a reentrant 
behaviour characterized by a first order phase transition (low temperature) and a 
second order phase transition (high temperature). It is worthwhile to observe that a 
phenomenon of this type has been already pointed out in thermotropic liquid crystals, 
where a succession of smectic-nematic-smectic-nematic phases has been registered 
~141. 

3. Conclusion 
In summary, the model proposed in this paper has several interesting features as it 

concerns reentrant behaviour in liquid crystals, even if some problems exist. Work is in 
progress to improve the model in order to overcome this. 
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